返回首页 登录 注册 购物车
关于我们 通知公告 服务指南 联系我们
植科头条频道
搜文章 敬请关注公众号
总站导航 AraShare PlantShare ExpShare 植科头条 学术讲堂 求职招聘 仪器设备 试剂耗材 技术服务 植科头条 学术专题
基因小传 | 不可不知的细胞信号“分子开关”ROP2
发布时间:2020-11-09 16:44:45


ROP (Rho-related GTPases from plant)是植物体内特有的一类Rho家族的信号转导小G蛋白,在植物生长发育的多个方面都可以作为信号分子开关发挥功能。自1993年首次从豌豆中发现以来[1],ROP已在拟南芥、水稻、玉米和烟草等多个物种中获得分离。迄今为止,多项研究表明ROP在叶表皮毛、根毛和花粉管的极性生长、种子萌发、细胞骨架动态组装以及气孔运动等方面起重要作用。


基因信息


Locus: AT1G20090

Name: ROP2

Other Name: ARABIDOPSISRAC-LIKE 4, ARAC4, ATRAC4, ATROP2, RHO-RELATED PROTEIN FROM PLANTS 2


基因功能


ROP2作为模式植物拟南芥ROP家族11个成员之一,属于第一类的ROP,参与许多重要的生理过程:如根毛极性生长、气孔关闭、叶表皮拼图细胞的形成、植物响应生物及非生物胁迫等。


突变体表型


图1 rop2突变体表型[2]


rop2 突变体的根毛明显短于野生型,在国内拟南芥突变体共享中心AraShare中有两个该基因的T-DNA插入突变体(N677858和N675195,详情请查阅http://www.arashare.cn/)。


基因表达谱


图2. ROP2基因表达图谱(引自eFP browser)


研究概况


作为小G蛋白ROP家族的成员,ROP2存在GDP结合的非活性形式和GTP结合的活性形式。GTP水解酶活化蛋白GAP将活性的ROP2转换为非活性的ROP2[3],而鸟苷酸交换因子GEF可以将非活性的ROP2转换为活性的ROP2[4]。活性的ROP2通过下游效应蛋白(如ICR/RIP、RIC等)调控钙离子浓度梯度、活性氧积累、囊泡分泌、细胞骨架动态组装等细胞活动[5][6],如图3所示:


图3 ROP的调控因子[7]


2002年,Claire S.Grierson和杨贞标课题组首次发现ROP2在根毛极性生长中的关键作用[8]。随着根毛的生长,ROP2的定位不断发生变化:在根毛的命运决定阶段,ROP2首先出现点状聚集,根毛在这里起始;在根毛起始和延伸过程中,ROP2一直定位于根毛的顶端,控制根毛的极性生长;当根毛成熟后,ROP2变为均匀的质膜定位[8](图4)。过量表达ROP2或持续活性形式的ROP2(ROP2CA)会使根毛生长的位置发生变化,并导致根毛变长[8]。高量的ROP2表达会使根毛的顶端出现分叉和鼓包[8]。持续失活形式的ROP2(ROP2DN)过量表达会导致根毛变短,个别根毛出现弯曲[8],如图5所示。在影响ROP2活性或定位的突变体如:fer-4[9]、scn1[10][11]、gef4gef10[12]、plp[13]、pat4[14]、map182、aro2/3/4[15]和arf1[10][16]等中,根毛的极性生长也受到严重破坏。


图4 ROP2在根毛极性生长过程中的定位[8]

图5 ROP2调控根毛的极性生长[8]


2008年,Youngsook Lee和杨贞标课题组发现ROP2在光诱导的气孔开放中也发挥着重要的作用[17]。GUS组化分析显示:ROP2在保卫细胞中高量表达[17]。融合蛋白的荧光数据表明:持续活性的ROP2(ROP2CA)定位在保卫细胞的质膜,而持续失活形式的ROP2(ROP2DN)定位于保卫细胞的胞质[17](图6)。研究结果证明:光可以诱导气孔的开放,而被光激活的ROP2以负反馈的形式调控气孔的开放[17]。调控ROP2活性的GEF2[18]、GEF4[18]以及ROP2下游的效应蛋白RIC7[19]在光诱导的气孔开放中也发挥着重要作用。


图6 ROP2及其突变形式在气孔中的定位[17]


与光诱导的气孔开放相反,ABA可以诱导气孔的关闭[20]。研究表明:ABA处理可导致保卫细胞质膜上的ROP2定位于胞质,从而使ROP2失活,导致气孔关闭[20](图7)。在种子的萌发过程中,ABA可以诱导GEF2的降解,而ROP2通过与GEF2互作,抑制GEF2的降解,进而参与ABA抑制的种子萌发过程[21]


图7 ABA处理导致ROP2定位于胞质[20]


]此外,ROP2在叶表皮拼图细胞的形成[22-24]、叶表皮毛细胞的极化[24]、花瓣的发育[25]、根的向重力性[26]、茎顶端分生组织和真叶的发育[27]以及耐受盐胁迫[28]等方面也发挥着重要作用。在此,不再赘述。


基因网络


图8. ROP2蛋白调控网络(引自STRING)


其他物种研究情况


早在2003年,J. E. Fowler课题组在玉米中创制了ROP2突变体,研究显示:玉米中的ROP2突变体,雄配子体的传代效率明显低于野生型[29]。近年来,关于ROP2在其他物种的研究相对较少。考虑到ROP2的重要功能,其同源蛋白在其它物种中的生物学功能值得我们深入研究。


展望


ROP2作为分子开关,在细胞的极性生长[8][30]、气孔的运动[17][20]、植物激素的响应[20][21]以及植物耐受非生物胁迫方面[28]均发挥着重要的作用。尤其是在根毛的极性生长方面,ROP2的定位及活性调控已经成为根毛极性生长研究的热点[30]。然而,在根毛的极性生长过程中,ROP2的表达调控、蛋白质稳定性、蛋白翻译后修饰等方面研究较少,有待进一步探究。


参考文献


[1]   Yang,Z. & Watson, J. C. Molecular cloning and characterization of rho, aras-related small GTP-binding protein from the garden pea. Proceedings of the National Academy of Sciences of the United States of America 90, 8732-8736,doi:10.1073/pnas.90.18.8732 (1993).

[2]  Kang,E., Zheng, M., Zhang, Y., Yuan, M. & Yalovsky, S. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth.  174, 202-222, doi:10.1104/pp.16.01243 (2017).

[3]   Wu,G., Li, H. & Yang, Z. Arabidopsis RopGAPs are a novel family of rhoGTPase-activating proteins that require the Cdc42/Rac-interactive binding motiffor rop-specific GTPase stimulation. Plant physiology 124, 1625-1636,doi:10.1104/pp.124.4.1625 (2000).

[4]   Berken,A., Thomas, C. & Wittinghofer, A. A new family of RhoGEFs activates the Ropmolecular switch in plants. Nature 436, 1176-1180, doi:10.1038/nature03883(2005).

[5]   Li,S., Gu, Y., Yan, A., Lord, E. & Yang, Z. B. RIP1 (ROP Interactive Partne1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Molecular plant 1, 1021-1035,doi:10.1093/mp/ssn051 (2008).

[6]  Zhou,Z. et al. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth. The Plant cell 27, 1140-1161, doi:10.1105/tpc.114.135400(2015).

[7]  Zhang,Y. & McCormick, S. The regulation of vesicle trafficking by small GTPasesand phospholipids during pollen tube growth. Sexual plant reproduction 23,87-93, doi:10.1007/s00497-009-0118-z (2010).

[8]   Jones,M. A. et al. The Arabidopsis Rop2 GTPase is a positive regulator of both roothair initiation and tip growth. The Plant cell 14, 763-776,doi:10.1105/tpc.010359 (2002).

[9]   Duan,Q., Kita, D., Li, C., Cheung, A. Y. & Wu, H. M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proceedings of the National Academy of Sciences of the United States of America 107,17821-17826, doi:10.1073/pnas.1005366107 (2010).

[10]   Ge,F. R., Chai, S., Li, S. & Zhang, Y. Targeting and signaling of ROP GTPases require synergistic interaction between GDI and vesicular trafficking. Journal of integrative plant biology, doi:10.1111/jipb.12928 (2020).

[11]   Carol,R. J. et al. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438, 1013-1016, doi:10.1038/nature04198 (2005).

[12]   Huang,G. Q. et al. Arabidopsis RopGEF4 and RopGEF10 are important for FERONIA-mediated developmental but not environmental regulation of root hairgrowth. The New phytologist 200, 1089-1101, doi:10.1111/nph.12432 (2013).

[13]   Chai,S., Ge, F. R., Feng, Q. N., Li, S. & Zhang, Y. PLURIPETALA mediates ROP2 localization and stability in parallel to SCN1 but synergistically with TIP1 in root hairs. The Plant journal : for cell and molecular biology 86, 413-425,doi:10.1111/tpj.13179 (2016).

[14]   Wan,Z. Y. et al. Arabidopsis PROTEIN S-ACYL TRANSFERASE4 mediates root hair growth.The Plant journal : for cell and molecular biology 90, 249-260,doi:10.1111/tpj.13484 (2017).

[15]  Kulich,I., Vogler, F. & Bleckmann, A. ARMADILLO REPEAT ONLY proteins confine RhoGTPase signalling to polar growth sites. 6, 1275-1288, doi:10.1038/s41477-020-00781-1 (2020).

[16]  Xu,J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1function in epidermal cell polarity. The Plant cell 17, 525-536,doi:10.1105/tpc.104.028449 (2005).

[17]  Jeon,B. W. et al. The Arabidopsis small G protein ROP2 is activated by light inguard cells and inhibits light-induced stomatal opening. The Plant cell 20,75-87, doi:10.1105/tpc.107.054544 (2008).

[18]  Wang,W., Liu, Z., Bao, L. J., Zhang, S. S. & Zhang, C. G. The RopGEF2-ROP7/ROP2Pathway Activated by phyB Suppresses Red Light-Induced Stomatal Opening.  174, 717-731, doi:10.1104/pp.16.01727 (2017).

[19]  Hong,D., Jeon, B. W., Kim, S. Y., Hwang, J. U. & Lee, Y. The ROP2-RIC7 pathway negatively regulates light-induced stomatal opening by inhibiting exocyst subunit Exo70B1 in Arabidopsis. The New phytologist 209, 624-635,doi:10.1111/nph.13625 (2016).

[20]  Hwang,J. U., Jeon, B. W., Hong, D. & Lee, Y. Active ROP2 GTPase inhibits ABA-andCO2-induced stomatal closure. Plant, cell & environment 34, 2172-2182,doi:10.1111/j.1365-3040.2011.02413.x (2011).

[21]  Zhao,S. et al. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis. The Plant journal : for cell and molecular biology 84, 886-899, doi:10.1111/tpj.13046 (2015).

[22]  Xu,T. et al. Cell surface-and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143, 99-110,doi:10.1016/j.cell.2010.09.003 (2010).

[23]  Xu,T., Nagawa, S. & Yang, Z. Uniform auxin triggers the Rho GTPase-dependent formation of interdigitation patterns in pavement cells. Small GTPases 2,227-232, doi:10.4161/sgtp.2.4.16702 (2011).

[24]  Fu,Y., Li, H. & Yang, Z. The ROP2 GTPase controls the formation of corticalfine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. The Plant cell 14, 777-794, doi:10.1105/tpc.001537(2002).

[25]  Ren,H. et al. SPIKE1 Activates ROP GTPase to Modulate Petal Growth and Shape. Plant physiology 172, 358-371, doi:10.1104/pp.16.00788 (2016).

[26]  Li,L., Xu, J., Xu, Z. H. & Xue, H. W. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. The Plant cell 17, 2738-2753, doi:10.1105/tpc.105.034397 (2005).

[27]  Li,X. et al. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes.  114, 2765-2770,doi:10.1073/Proceedings of the National Academy of Sciences of the United States of America .1618782114 (2017).

[28]  Li,C., Lu, H., Li, W., Yuan, M. & Fu, Y. A ROP2-RIC1 pathway fine-tunesmicrotubule reorganization for salt tolerance in Arabidopsis. Plant, cell &environment 40, 1127-1142, doi:10.1111/pce.12905 (2017).

[29]  Arthur,K. M., Vejlupkova, Z., Meeley, R. B. & Fowler, J. E. Maize ROP2 GTPase provides a competitive advantage to the male gametophyte. Genetics 165,2137-2151 (2003).

[30]  Stanislas,T. & Jaillais, Y. Plant Cell Biology: How to Give Root Hairs Enough ROPs? Current biology : CB 29, R405-R407, doi:10.1016/j.cub.2019.04.023 (2019).




本内容来源于网络,如有侵权请联系本网站删除,谢谢!